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Abstract

Nonlinear stability of desired dynamics in multi-stable systems (systems with more than one attracting
state) depends on the shape and size of its basins of attraction. ‘Basin stability’ estimates the volume
of a state’s basin of attraction and estimates the probability that a random initial condition evolves
towards the state. If properties of the random initial conditions used are analysed, then basin stability
can also provide estimates of the shape of the basin of attraction, but which are coarse-grained and
lack details of small-scale features of its boundary. The closest approach of the basin boundary to the
state can be computed via an optimisation procedure, providing minimum perturbation amplitudes to
leave the desired region. Minimal disturbances are missed by basin stability estimations (by two orders
of magnitude in perturbation energy for transition to fluid turbulence) and so offer a complimentary
nonlinear stability measure to basin stability.
Minimal disturbances for desynchronisation are computed in the ‘swing equation’, a network of second-
order Kuramoto oscillators which acts as a simple model for power-grid dynamics, in small four-
node power-grids and a complex model UK power-grid. The amplitudes of minimal disturbances
vary non-monotonically with the number of connections in the grid, depending on the details of the
dynamical evolution of the perturbation across the grid. A comparison between the amplitude of
minimal disturbances and basin stability for a range of nodal powers and dissipation rates shows that
these nonlinear stability measures evolve independently, emphasising the need for both measures to
be used in the design of nonlinear systems. The desynchronised dynamics of large power-grids are
investigated in detail; an asymptotic expansion is developed to explain the grid-wide dynamics of
single-node ‘dead-end’ desynchronisation events.
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1 Introduction

Maintaining synchrony in a power-grid network is
essential for its proper functioning; desynchronisa-
tion of one oscillator from the mean grid frequency
can cause cascading desynchronisation across the
grid and ultimately a blackout. Various models

have been used to study the large-scale dynam-
ics of power-grids [1–7], and a particular focus
has been placed on a simplified model known as
the ‘swing equation’ (a second-order Kuramoto-
like model) (e.g. [8]) which can be derived from
considering near-synchronous power transmission
between connected nodes of a idealised network
[9]. In retaining some key aspects of power-grid
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dynamics (interacting oscillators at each node
with their own power output/usage and damp-
ing rate, linked via their phase differences), whilst
removing details of the transmission lines, power
generation, and higher order effects, the swing
equation model has proven a fertile testing ground
for analysing methodologies for deducing stabil-
ity properties of these types of oscillators. Indeed,
many approaches have been taken to quantify the
robustness of its synchronised states, including via
linear stability [10], the emergence of synchronisa-
tion [11], its response to noise [12], and transient
dynamics [13, 14] and its associated ‘survivability’
[5, 15, 16].

Like many nonlinear systems, the swing
equation admits multiple synchronised states
[17] in addition to locally attracting desynchro-
nised states and long-lived transient trajectories
between them [18]. Analysis of this multi-stability
requires a dynamical systems approach in which
global features of the state space and its distinct
basins of attraction are computed. The ‘basin sta-
bility’ [19] of synchronised states to single- and
multi-node disturbances have been examined [20–
23]; the trajectories of a very large number of
initial conditions are computed, and this is used
to estimate the volume of the basin of attraction
of the synchronised states based upon the frac-
tion of initial conditions which synchronise. Such
analyses may also be constrained to certain sets of
realistic disturbances [5, 24], or used to estimate
the shape of the basin of attraction [25].

Basin stability studies provide an overall mea-
sure of the nonlinear stability of the synchronised
state; the ratio of the estimated volume of the
basin of attraction of synchronised states to the
volume of all realistic perturbations provides an
estimate of the synchronisation probability of the
system, that is, the probability that a random
(realistic) perturbation synchronises. For reason-
ably small networks, this volume estimation can
be computed fairly rapidly. However as the net-
work size becomes large, the number of random
initial conditions needed to provide a reasonable
estimate of the basin volume makes the method
challenging to implement. For example, using the
‘brute force’ (non probabilistic) method of [22],
if M different initial conditions are to be tested
at each of N nodes, then the total number of

computations needed for multi-node basin stabil-
ity is (M + 1)N − 1 = O(MN ), an exponential
scaling in the number of nodes. Similar basin
volume computations have been conducted in a
fluid dynamics setting, where the fraction of ini-
tial conditions which laminarise compared to those
which transition to turbulence are enumerated
[25]. The extremely large number of initial con-
ditions needed to provide a robust estimate of
the laminarisation probability makes this is a sig-
nificant computational challenge, though it has
recently been demonstrated that a substantial
reduction can be made in the number of initial
conditions needed by using a Bayesian method
[26].

What these basin volume studies overlook,
however, are details of the overall shape of the
basin of attraction of the synchronised state. In a
simple bi-stable system with two attracting states,
the basins of attraction of the two states are
separated by the stable manifold, or ‘edge’ mani-
fold [27], of an unstable saddle point. The shape
of this edge manifold, and particularly its clos-
est approach to either of the attracting states,
provides information about the most dangerous
perturbations to the system. By computing the
basin stability, fine details of the edge manifold
will be missed, including relatively small intru-
sions of the edge manifold towards one of the
attracting states. Indeed, in the fluid dynamics
setting an initial condition which transitions to
turbulence was found by Pershin et al. (2022)
[26] with an amplitude two-orders-of-magnitude
smaller than the amplitude at which 100% of ini-
tial conditions were predicted to re-laminarise.
This initial condition, termed the ‘minimal seed
for turbulence’ [28] is computed using a varia-
tional procedure to identify the initial condition
which grows the most over large times. In Per-
shin et al. (2022) [26], it appears to be located
at the end of a narrow intrusion of the turbulent
attractor’s basin of attraction towards the laminar
state and as such is missed by the coarse-graining
involved when selecting a (large number of) ran-
dom initial conditions. Although the probability of
a random finite-amplitude perturbation taking the
form of the minimal seed is small, it nevertheless
represents a possible route away from the lami-
nar state representing a ‘worst-case’ perturbation,
and may be interpreted in terms of instantons in
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large-deviation theory [29]. Minimal seeds have
been computed in various shear flows [26, 30–33]
in addition to problems in thermoacoustics [34],
magnetohydrodynamics [35], and mixing [36, 37].
Whilst they are challenging to compute, the com-
putational load is comparable to that of basin
stability when the systems are turbulent (high
dimensional) [26].

Halekotte & Feudel (2020) [38] translated the
minimal seed methodology in fluid dynamics to
transition in multi-stable networked dynamical
systems (systems for which more than one attract-
ing state exists at the same parameter values),
including the swing equation. Instead of ‘mini-
mal seed’, Halekotte & Feudel (2020) [38] called
such initial conditions the ‘minimal shock’ which
leads to desynchronisation; here we will use ‘min-
imal disturbance for desynchronisation’ as a more
descriptively explicit title than either ‘seed’ or
‘shock’. Halekotte & Feudel (2020) [38] computed
minimal disturbances in a model UK grid simi-
lar to that of Mitra et al. (2017) [22], and found
a number of different small-amplitude perturba-
tions to the synchronised state leading to localised
desynchronisation events. These events typically
occurred in ‘dead-end’ regions of the power-grid,
which take a relatively simple form for single-node
dead-ends [39] or evolve chaotically in small-group
dead-ends [18].

The distribution of power generators and con-
sumers in the model UK grid used by Halekotte
& Feudel (2020) [38] was different to the multi-
node basin stability computations of Mitra et al.
(2017) [22], as was a key model parameter, mak-
ing a direct comparison between the two stability
measures challenging. Furthermore, the complex-
ity of the model UK power-grid (with 120 nodes)
precludes general conclusions about the behaviour
of minimal disturbances in the swing equation
being made. Halekotte & Feudel (2020) [38] also
use a convergence measure for their optimisation
algorithm which is known (in the turbulence tran-
sition context) to terminate the algorithm early
and hence miss more optimal disturbances [31].

In this work, minimal disturbances for desyn-
chronisation in the swing equation will be com-
puted in the simple four-node grids of Ji & Kurths
(2014) [20] and the large UK model of Mitra et
al. (2017) [22], using the same parameters and
node distributions as those basin stability com-
putations, so that a direct comparison between

the two stability measures can be made. All the
grids examined are multi-stable for the parame-
ters under consideration. A detailed description
of the optimisation procedure for finding such
minimal disturbances will be given, along with a
robust convergence criteria based upon gradients
of the objective functional. Furthermore, an ana-
lytical asymptotic solution will be developed to
fully explain the dynamics of single-node dead-end
desynchronisation in the swing equation for large
power-grids, rigorously demonstrating the valid-
ity of the estimates of Menck et al. (2014) [39] for
such dead-ends.

A primary purpose of this work is to demon-
strate that both basin stability and minimal dis-
turbances are essential measures of the nonlinear
robustness of synchronised states. They provide
complimentary information about the state space;
basin stability represents global information about
the ‘likelihood’ of synchronising the system, but
misses entirely the worst-case scenarios for desyn-
chronisation that minimal disturbances identify.
On the other hand, minimal disturbances pro-
vide very limited further information about the
state space, owing to their extreme localisation.
Together, however, they provide a good overview
of the system’s nonlinear behaviour. Basin sta-
bility demonstrates how likely a random initial
condition is to synchronise, whereas minimal dis-
turbances highlight dangerous perturbations to a
system that is already synchronised.

In section 2, the swing equation is introduced,
along with the variational method for identifying
minimal disturbances to cause desynchronisation
and a detailed algorithm for its solution. Section
3 demonstrates the convergence of the method
for a particular power-grid network, and section
4 shows how the minimal disturbances vary with
network parameters and topology for the four-
node grids of Ji & Kurths (2014) [20], comparing
the minimal disturbances to their basin stability
results. Section 5 considers the model UK grid
of Mitra et al. (2017) [22], including a detailed
analysis of its dead-end desynchronisation events.
Conclusions are given in section 6.

2 The power-grid model

The swing equation models a power-grid asN cou-
pled oscillators in a network. The ith oscillator has
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phase ϕi(t) = Ωt + θi(t), where Ω is the synchro-
nised grid frequency. The angular velocity of each
oscillator is given by ϕ̇i(t) = Ω+ θ̇i(t) ≡ Ω+ωi(t),
so that a synchronised state is represented by
ωi(t) = 0 for i = 1, . . . , N . The oscillators are
located on a graphed network (see Fig. 1) where
each node (oscillator) on the graph is coupled to
a number of other nodes along edges of the graph.
These connections are represented by the graph’s
adjacency matrix A, such that Aij = 1 if node i is
connected to node j and Aij = 0 otherwise. Nodes
are not connected to themselves, so that Aii = 0
for all i.

Power transmission between nodes is repre-
sented through a coupling strength K. For sim-
plicity, and for later comparison with [20, 22, 38],
K is taken to be the same constant for each con-
nection in the graph, meaning that all connections
in the grid transmit power equally efficiently (this
simplification implies that all transmission lines
are of the same length, and have identical prop-
erties, which is unrealistic for actual power grid
dynamics, but is nonetheless a useful simplifica-
tion for the analysis and comparison). Under the
assumption of small deviation from the mean grid
frequency, |ωi| ≪ Ω, and using an appropriate
simplified description of power dynamics at each
node, a Kuramoto-like model for the power-grid
dynamics can be derived (see [9] for the details
of the derivation and its simplification of nodal
power dynamics), known as the swing equation:

ω̇i = −αωi + Pi +K

N∑
j=1

Aij sin(θj − θi), (1)

θ̇i = ωi, for i = 1, . . . , N. (2)

In particular, power transmission between nodes
depends on the phase difference between the
nodes.

Each oscillator experiences a damping α which
acts to synchronise the system by returning ωi(t)
to 0. Each oscillator represents either a generator
or a consumer of power, and carries a (dimen-
sionless) power Pi which is positive for generators
and negative for consumers. The grid is taken to
be in power balance, so that

∑N
i=1 Pi = 0. For

simplicity, and again for later comparison with
[20, 22, 38], we will require that exactly half of
the nodes are consumers and exactly half of the
nodes are generators (requiring that N is even),

and that all consumers have Pi = −P and all gen-
erators have Pi = +P , where P is some constant
(dimensionless) power.

The use of a single, constant parameter P to
control the power generation and consumption (in
addition single parameters K and α to control
the coupling strength and nodal damping, respec-
tively) represent a significant departure from real-
istic power-grid dynamics, beyond that already
inherent in the derivation of the swing equation.
However, it does allow for a straightforwardly
designed parametric study of the swing equation’s
dynamics, and removes ambiguity about how to
treat grids with different network topology (adja-
cency matrix A). Most presciently, it allows for
a direct comparison between basin stability and
minimal disturbances to be made, via the results
of [20, 22, 38].

Synchronous states are found by setting ωi =
0. The phase differences between the nodes in
the grid representing synchronised states therefore
satisfy

K

N∑
j=1

Aij sin(θ
s
j − θsi ) = −Pi, for i = 1, . . . , N.

(3)
These steady states may be linearly stable or
unstable, and may coexist with stable asyn-
chronous states depending upon the parameters
P , α and K and the network topology and size
(see e.g. [10, 20]). Equations (3) in fact define a
number of families of synchronised states, since
the equations are invariant under the transforma-
tion θi 7→ θi + β for any β, and inversion of Aij

(which can be singular) and sine introduce fur-
ther distinct families of solutions even within the
periodic restriction −π ≤ θi < π. Appendix A
provides a description of the solution families for
the graph in Fig. 1(a). To eliminate the transla-
tion symmetry in the synchronous phases, we shall
instead refer only to the synchronous phase dif-
ferences ∆θsij = θsj − θsi , where we note that ∆θsij
is invariant under a translation of the phases by
β. Again for simplicity, for the remainder of this
work the principle solutions to (3) using the arc-
sine function will be taken. Inversion of Aij will
take the Moore–Penrose pseudoinverse.

For parameters which lead to bistability
between synchronous and asynchronous states, we
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search for the minimal disturbance to the syn-
chronous state which is able to transition to an
asynchronous one. For this purpose, a measure of
the size of disturbance is required. We define two
energy-like quantities k(t) and p(t) which respec-
tively measure the average ‘potential’ and ‘kinetic’
energy of the disturbance and are given by

p(t) ≡ K

4N

N∑
i=1

N∑
j=1

Aij(θj(t)− θi(t)−∆θsij)
2,

k(t) ≡ 1

2N

N∑
i=1

ωi(t)
2. (4)

They respectively measure the average phase dif-
ference between connected nodes and the average
angular velocity of the nodes. An extra factor
of 1/2 in the definition of p(t) accounts for the
double-counting over both i and j of each connec-
tion in the grid given that Aij = Aji and ∆θsij =
−∆θsji. It is clear why k(t) can be interpreted as
a ‘kinetic’ energy in the system. Labelling p(t) as
a ‘potential’ energy is in analogy to that of linear
springs which seek to restore equilibrium. Addi-
tionally, an alternative measure of the size of a
phase perturbation is given by Alvares & Baner-
jee (2023) [16], which is the work done by external
torque in moving the phase at a single node to
its new value, keeping the other phases fixed; for
small phase perturbations at a single node, p(t)
is proportional to this work done. This definition
of p(t) is also invariant under a translation of the
phases by β. The total energy of the system is
defined as E(t) = p(t)+k(t) and the initial energy
of a disturbance is denoted E0 ≡ E(0). In the fol-
lowing figures, phases differences are taken in the
range −π ≤ θj − θi < π so that the quantity p(t)
(and by extension E(t)) does not grow without
bound when ωi ̸= 0.

The minimal disturbance to cause desynchro-
nisation is the set of initial conditions I0 =
{θi(0), ωi(0)}Ni=1 of smallest initial energy E0

which leads to desynchronisation. Any synchro-
nised state has k = 0, and so initial conditions
are sought for which the kinetic energy k grows
as t → ∞, and the initial condition which does
this with smallest initial energy E0 is the minimal
disturbance to cause desynchronisation. It should
be noted that Halekotte & Feudel (2020) [38] only
consider the kinetic energy, and only allow initial

conditions with frequency perturbations, setting
θi(0) = 0 for i = 1, . . . , N .

To solve for the minimal initial energy E0 and
associated initial conditions I0, initial conditions
which maximise the kinetic energy k as t→∞ are
found for fixed initial energy E0,

max
I0

lim
t→∞

k(t) s.t. E(0) = E0, (5)

after which a further optimisation to minimise E0

is performed until a critical energy Ec is reached
for which all initial conditions with E0 < Ec

re-synchronise. Due to the nature of the optimisa-
tion algorithm used below, initial conditions which
grow the most at some value of E0 may be used as
initial guesses for initial conditions which grow the
most at some smaller value of E0 and this process
is repeated until no further reductions in E0 are
possible whilst still identifying an initial condition
which desynchronises. Instead of taking the limit
t → ∞, to solve (5) we find the initial conditions
I0 which maximise k(T ), where T > 0 is some
large time which is able to distinguish between
re-synchronising and desynchronising trajectories.

The optimisation is performed by constructing
a constrained, extended Lagrangian:

L = k(T )− 1

N

N∑
i=1

∫ T

0

[
φi(θ̇i − ωi)+

ηi

(
ω̇i + αωi − Pi −K

N∑
j=1

Aij sin(θj − θi)

)]
dt

− 1

N

N∑
i=1

φ0
i (θi(0)− θ0i )−

1

N

N∑
i=1

η0i (ωi(0)− ω0
i )

− c

(
1

2N

N∑
i=1

N∑
j=1

Aij |θ0j − θ0i −∆θsij |2

+
1

N

N∑
i=1

|ω0
i |2 − 2E0

)
, (6)

where φi(t), ηi(t), φ0
i and η0i for i = 1, . . . , N

and c are the Lagrange multipliers which
enforce, respectively, the kinetic equations (2), the
dynamic equations (1), initial conditions for the
phases, initial conditions for the angular velocities,
and the total energy of the initial conditions.

Taking variations with respect to θi and ηi and
setting them to zero yields the ‘adjoint’ equations
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for the Lagrange multipliers φi(t) and ηi(t):

η̇i = αηi − φi, (7)

φ̇i = K

N∑
j=1

(ηiAij − ηjAji) cos(θj − θi), (8)

φi(T ) = 0, ηi(T ) = ωi(T ), (9)

φi(0) = φ0
i , ηi(0) = η0i , (10)

and taking variations with respect to the initial
conditions leads to the gradients

δL
δθ0i

=
1

N

[
φ0
i + 2c

N∑
j=1

Aij(θ
0
j − θ0i −∆θsij)

]
,

(11)

δL
δω0

i

=
1

N
(η0i − 2cω0

i ), (12)

which may be used iteratively to find initial con-
ditions I0 which grow the most over a time
T .

The Lagrange multiplier c is determined by the
specific method used to search for better initial
conditions. Steepest ascent reads

θ0,ni = θ0,n−1
i +

ϵ

N

{
φ0
i

+2c

N∑
j=1

Aij

[
θ0,n−1
j − θ0,n−1

i −∆θsij

]}
,

(13)

ω0,n
i = ω0,n−1

i +
ϵ

N

[
η0i − 2cω0,n−1

i

]
, (14)

where ϵ is a step-size between iterations, and n
refers to the nth iterate in the optimisation pro-
cedure starting from some guess {θ0,0i , ω0,0

i }Ni=1

(which will typically arise from an optimal solu-
tion at a larger value of E0). From these update
relations, c is determined by ensuring that the
new initial conditions have energy E0 (which, in
the case of steepest ascent, results in a quadratic
equation for c which is given in Appendix B).

To summarise the algorithm for computing
minimal disturbances which cause desynchronisa-
tion, Algorithm 1 shows a pseudocode outlining
the procedure. The algorithm uses m to count the
energy levels examined and n to count iterations
at each energy level. To begin the algorithm at

m = 0, a random desynchronising initial condi-
tion with relatively large energy is identified with
initial energy Em

0 ≫ Ec. This initial condition is
then uniformly re-scaled to a lower initial energy
Em+1

0 = rEm
0 where r is some re-scaling factor

that is adjusted as the algorithm proceeds. This
new initial condition is then integrated using the
swing equation (2–1) until the target time t = T
is reached. The adjoint equations (7–8) are ini-
tialised at t = T using (9) before being integrated
backwards in time until t = 0. The Lagrange mul-
tipliers φ0

i and η0i are set using (10) and then c is
computed using (B11).

If this initial condition desynchronised the
system, then m is incremented and the initial
condition is immediately re-scaled in energy once
more via Em+1

0 = rEm
0 . If the initial condition

did not desynchronise the system, then n is incre-
mented and a new initial condition at the same
energy level is computed using (13–14). This pro-
cess is repeated until a desynchronising initial
condition is found at this energy level. The energy
levels are continued to be rescaled until a synchro-
nising initial condition has gradient residual R,
defined by

R ≡
N∑
i=1

1

(φ0
i )

2

(
δL
δθi

)2

+

N∑
i=1

1

(η0i )
2

(
δL
δω0

i

)2

,

(15)
smaller than some preset tolerance. The resid-
ual R measures the magnitude of the gradient
of L, and division by φ0

i and η0i is performed
given that the adjoint equations (7–8) are linear
in φi and ηi meaning that the amplitude of these
gradients is somewhat arbitrary (albeit set by
ηi(T ) = ωi(T )). In contrast, Halekotte & Feudel
(2020) [38] identify convergence when improve-
ments in the objective functional (in this case
k(T )) between consecutive iterations become suf-
ficiently small. Though this weaker convergence
criterion has some precedence in the fluid mechan-
ics turbulence transition problem (see e.g. [40]),
it is known that minimal changes in the objec-
tive functional may occur for many hundreds of
iterations while a gradient residual equivalent to
R remains large, before sudden increases in the
objective functional are found, accompanied by an
eventual decay in R [31].

When a synchronising initial condition with a
small residual is found, if the difference between
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Algorithm 1 Finding minimal disturbances

1: m← 0
2: Find desynchronising IC {θ0i , ω0

i }Ni=1

3: m← m+ 1
4: Em

0 = rEm−1
0 ▷ Reduce E0

5: θ0i ← θsi +
√

Em
0

Em−1
0

(θ0i − θsi )

6: ω0
i ←

√
Em

0

Em−1
0

ω0
i

7: n← 0
8: θi(0)← θ0i and ωi(0)← ω0

i

9: Solve swing equation (1–2) for 0 ≤ t ≤ T

10: kn(T )← 1
2N

∑N
i=1 ωi(T )

2

11: if kn(T ) < kn−1(T ) then ▷ No improvement
12: Reduce step-size ϵ
13: Recompute c via (B11)
14: Recompute gradients δL

δθ0
i
, δL

δω0
i
via (11–12)

15: Create new ICs via (13–14)
16: go to 8 ▷ Restart from t = 0
17: else if kn(T ) shows desynchronisation then
18: go to 3 ▷ Reduce E0

19: end if
20: φi(T )← 0 and ηi(T )← ωi(T )
21: Solve adjoint equation (7–8) for T ≥ t ≥ 0
22: φ0

i ← φi(0) and η0i ← ηi(0)
23: Compute c via (B11)
24: Compute gradients δL

δθ0
i
, δL

δω0
i
via (11–12)

25: if Consecutive gradients aligned then
26: Increase step-size ϵ
27: Recompute c via (B11)
28: Recompute gradients via (11–12)
29: else if Gradients misaligned then
30: Decrease step-size ϵ
31: Recompute c via (B11)
32: Recompute gradients via (11–12)
33: end if
34: Compute residual R via (15)
35: if R does not indicate convergence then
36: n← n+ 1
37: Create new ICs via (13–14)
38: go to 8 ▷ Continue iterating at this E0

39: end if ▷ Converged residual
40: if Em−1

0 −Em
0 > ϵEc then ▷ Large energy gap

41: Em
0 ←

Em
0 +Em−1

0

2 ▷ Increase E0

42: Decrease r
43: go to 5 ▷ New ICs with larger E0

44: end if
45: Converged: Em

0 < Ec < Em−1
0

its initial energy and the previous initial energy
level, Em−1

0 − Em
0 = (1 − r)Em−1

0 , is below some
threshold ϵEc (taken here to be 10−4), then opti-
mal initial conditions either side of the edge have
been found and (a local result for) the critical
minimal energy Ec for desynchronisation satisfies
Em

0 < Ec < Em−1
0 . However, if the current differ-

ence between consecutive energy levels is too large,
then the algorithm may still be a long way from
converging to Ec. In this case, the energy level Em

0

is replaced by (Em
0 + Em−1

0 )/2 and the re-scaling
factor r is reduced accordingly for all further itera-
tions of the algorithm. These re-scaling operations
continue until the edge is sandwiched by converg-
ing initial conditions separated in energy by no
more than ϵEc .

During iterations within each energy level, two
methods are used to adjust the step-size ϵ used
in the steepest ascent updates (13–14). Firstly, if
at time t = T the current iteration has a kinetic
energy k(T ) which is smaller than that of the pre-
vious iteration, then the gradient ascent update
(13–14) has overshot a critical point and the step-
size ϵ is too large. A reduction in ϵ is therefore
made, which then requires the Lagrange multiplier
c and the associated gradients from the previ-
ous iteration to be recomputed, given that they
depend on ϵ, before a new initial condition is pro-
duced. Secondly, a normalised (between -1 and 1)
dot-product between the 2N -dimensional gradient
vectors at the current and the previous iteration
is taken to see the alignment between the two con-
secutive gradient directions. If the dot-product is
greater than 0.95, then the two consecutive gradi-
ents are closely aligned and it is possible to use a
larger step-size ϵ as both gradients are indicating
that the critical point is in the same direction. On
the other hand, if the dot-product is less than−0.5
then the consecutive gradient vectors are mis-
aligned and the algorithm is zigzagging towards
the critical point, meaning that ϵmust be reduced.
This dot-product is taken at most once per iter-
ation to avoid over-adjusting the step-size ϵ. Any
adjustments to ϵ made in one energy level are
carried forward to the next.

On occasion, the algorithm fails to find desyn-
chronising initial conditions or improvements to
k(T ) whilst the residual R remains large. In
such instances, some manual fine-tuning may be
required, with options including reducing the
energy re-scaling factor r anyway and restarting
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the algorithm from there, or increasing the tar-
get time T . The latter approach is particularly
important as Ec is approached since trajectories
spend larger amounts of time on the edge manifold
before either synchronising or desynchronising as
the distance to the edge decreases.

A similar methodology has been used in fluid
dynamics to identify minimal seeds for turbulence
[26, 30, 32, 33] in addition to approaching Ec

from below [31, 32] (see Kerswell (2018) [28] for a
review).

3 Identification of minimal
disturbances

The basin stability computations of Ji & Kurths
(2014) [20] considered four simple graphs, labelled
G1 through G4 and shown in Fig. 1. Two nodes (1
and 4) were taken as consumers with Pi = −P and
two nodes (2 and 3) as generators with Pi = P .
The adjacency matrices for these graphs are given
by

A1 =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , A2 =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 ,

A3 =


0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

 , A4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (16)

All four graphs exhibit multi-stability in the swing
equations (2–1), when K = 1 and α and P are
varied. In particular, when α = 0.5 and P = 0.8, a
random initial condition has around 30% to 40%
chance of desynchronising each of the networks
(see [20] for exact results). These parameter values
will be used throughout this section when find-
ing minimal disturbances for each graph; other
parameter values will be examined in section 4.
It can be seen that the dynamics of graphs G2
and G3 are equivalent under the transformation
θi 7→ −θi and Pi 7→ −Pi, and so only graphs G1,
G2 and G4 will be considered further here.

Fig. 2(a) shows the time-evolution of the total
energy E(t) for optimal disturbances at a selec-
tion of initial energies Em

0 , starting the algorithm
at E0

0 = 2. For clarity of the figure, not all val-
ues of m used during the computation are shown.

As the initial energy E0 is decreased, the optimal
solutions spend longer and longer near a plateau
of intermediate energy E ≈ 1.44 which is associ-
ated with a saddle point in state space separating
the attracting synchronised and desynchronised
dynamics. The smallest initial perturbation which
desynchronises is plotted in thick blue, and has
initial energy E0 = 0.6656. The thin red line
shows the trajectory of the optimal disturbance
with E0 = 0.6655, which ultimately energetically
decays and returns to the synchronised state; no
initial conditions which cause desynchronisation
are found by the optimisation procedure at this
lower energy. We can therefore conclude that the
minimum disturbance to cause desynchronisation
(at least in the sense of a local minimum, see later
discussion) has critical energy Ec in the range
0.6655 < Ec < 0.6656.

The dynamics of this minimal disturbance are
shown in figures 2(b,c) which plot the evolu-
tion of its angular velocities and phases (plotted
restricted to [−π, π)) respectively. The trajec-
tory admits a ready interpretation. Some kinetic
energy is initially located in two of the nodes (node
1, a consumer and node 3, a generator) whilst
the other two nodes begin with negligible kinetic
energy. Meanwhile, nodes 1 and 3 also begin with
a moderate phase perturbation, as do nodes 2
and 4 albeit at a smaller amplitude. The initial
kinetic energy in nodes 1 and 3 drives the phase
of these oscillators whilst leaving the other two
nodes largely undisturbed from their initial con-
figuration. As the phase of node 1 and 3 are driven
by their angular velocity, they lose kinetic energy
until t ≈ 3 at which point all nodes have negligi-
ble kinetic energy and their phases remain roughly
constant for 3 ≲ t ≲ 8. The set of phases sustained
during this quasi-steady period is in fact a solu-
tion of the synchronised equations (3), also plotted
in Fig. 2(c). However, this particular synchronised
solution is (linearly) unstable and so the trajec-
tory eventually exponentially diverges from this
saddle-point state along its unstable manifold; the
minimal disturbance itself lies on its stable mani-
fold. Once the trajectory leaves the vicinity of this
saddle point, it breaks down into desynchronised
dynamics.

To demonstrate that the solution plotted in
figures 2(b,c) is a converged solution of the optimi-
sation problem, Fig. 3 plots the residual R defined
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Fig. 1 The four simple graphs, G1, G2, G3 and G4. Generators are shown with circles and consumers are shown with
squares.
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Fig. 2 Dynamics of optimal disturbances in graph G1. (a) Time-evolution of the total energy E(t) for optimal disturbances
with initial energies E0 = 2, 1.5, 1.25, 1, 0.8, 0.7, and 0.675 (grey) and 0.6656 (blue, thick) and 0.6655 (red). (b,c) Time-
evolution of the angular velocities and phases respectively of each node for the minimal disturbance with initial energy
E0 = 0.6656, with node 1 (blue), node 2 (red), node 3 (yellow) and node 4 (purple). In (c), a steady state solution for the
phases (detailed in Appendix A) is shown (black, dashed).
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Fig. 3 Residual R defined by (15) (left-hand axis, blue) and initial energy E0 (right-hand axis, red) against iteration
number n.

in (15). Convergence of the solution requires that
R → 0. Fig. 3 shows that whilst R remains large
for initial energies E0 substantially larger than
the minimum disturbance energy Ec, convergence
of R occurs as the initial energy E0 is reduced.
This is because, far from Ec there are many initial
conditions which desynchronise, and it is impos-
sible to define an ‘optimal’ such initial condition;
nearby to Ec there are far fewer initial condi-
tions which do so, and a clear optimal emerges.
The convergence of R is somewhat chaotic, with
small values interspersed with large values in the
latter stages of the algorithm; this feature is in
common with minimal seed computations in fluid
turbulence [32] and other optimisation problems
exhibiting ‘chaotic gradient descent’ (see e.g. [41]).

The nature of the optimisation algorithm
means that any solutions found are inherently
local optimals which do not rule out the possibility
of other, less energetic disturbances which desyn-
chronise the system. To investigate the potential
of a better local optimal solution, a number of
alternative strategies were employed to initialise
and run the optimisation algorithm. The results
in Fig. 2 were initialised at E0 = 2 with a random
initial condition (each θi and ωi sampled from a
normal distribution with mean 0 and variance 1,
then scaled uniformly to have energy E0 = 2).
Another random initialisation chosen from the
same distribution was gradually reduced in energy
by individually reducing k0 ≡ k(0) and p0 ≡ p(0)
instead of E0, which led to the same optimal solu-
tion. Furthermore, two alternative initialisations
were trialled (followed by reducing E0) which (1)
disturbed only node 1, and (2) disturbed pairs of

nodes 1 and 4, and 2 and 3 identically owing to the
symmetry 1 ↔ 4 and 2↔ 3. Both strategies ulti-
mately led to the same optimal disturbance as E0

was lowered. Although these further examples do
not demonstrate that the solution presented is in
fact a global optimum, they provide evidence that
the solution may be such, and at least demonstrate
that the solution found by the original algorithm
represents a dynamically significant trajectory.

For the remainder of this paper, only solutions
found using the original algorithm will be pre-
sented, with the caveat that they may only be local
optimal solutions. One could imagine searching for
other local minima by extending the Lagrangian
(6) with a further term which penalises initial
conditions close to the already identified minima,
though it is unclear how the new optimisation
problem would behave, and such an investigation
is beyond the scope of this work. However, as
section 4 will demonstrate, finding any minimal
disturbance at all represents an improvement over
basin stability computations (when the purpose is
identifying worst-case scenarios), which miss such
perturbations entirely. Indeed, the two stability
measures are designed to measure fundamentally
different aspects of the state space and its trajec-
tories, and as such each supplies complementary
information inaccessible to its counterpart, how-
ever robust that information may be.

The dynamics of minimum disturbances to
cause desynchronisation found in graphs G2 and
G4 are shown in figures 4(a,c) and 4(b,d) respec-
tively (with the same parameters K = 1, α =
0.5 and P = 0.8). The critical energy for G2
satisfies 1.40054 < Ec < 1.40055 and for G4
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Fig. 4 Dynamics of the minimal disturbances in graphs G2 (a,c) and G4 (b,d). Time-evolution of the angular velocities
(a,b) and phases (c,d). Line styles as in figures 2(b,c). For graph G2 in (a,c), the dynamics of nodes 2 and 3 are identical.
Insert in (a) shows early-time dynamics.

satisfies 1.26725 < Ec < 1.26750. Both critical
energies are substantially larger than that found
for G1, indicating that the more connected grids
are substantially more (nonlinearly) stable to per-
turbations than G1, despite having similar sized
basins of attractions at these parameters accord-
ing to Ji & Kurths (2014) [20]. This underlines
one of the central motivations for this work: local
properties of the basin of attraction, in particular
the closest approach of the edge manifold to the
synchronised state, significantly affect the robust-
ness of the synchronised state and may be missed
by a global basin-size approach.

The trajectory of the minimal disturbance of
graph G2 plotted in figures 4(a,c) shows that the
dynamics of nodes 2 and 3 (which are newly con-
nected in comparison to G1) are identical for the
minimal disturbance despite the initial guess at
E0 = 2 not having this restriction. Additionally,
no steady state saddle-point is visited by the tra-
jectory. UnlikeG1, forG2 the initial kinetic energy
is stored in each consumer (nodes 1 and 4) which
are the least connected nodes in the graph. This
(relative) isolation in the grid appears to allow the
initial kinetic energy to drive the phases of these
two nodes in a way that minimises losses to the
rest of the grid. In turn, this drives the other two
nodes in the grid. The efficiency of storing energy
in the more isolated nodes at the outset, and then
driving the rest of the grid, appears to be the main

factor behind the minimal disturbance in this par-
ticular grid. Its dynamics are thus distinct from
both G1 and G4, for which all nodes are equally
well connected.

The trajectory of the minimal disturbance of
graph G4 plotted in figures 4(b,d) does visit an
unstable steady state briefly around t ≈ 2 though
not for any substantial period of time. The initial
kinetic energy is distributed in all four nodes, in
contrast to both G1 and G2. Unlike G2, no pair
of nodes shares an identical evolution, although
the dynamics of the pair of nodes 1 and 4, and
the pair of nodes 2 and 3 are similar throughout.
This is in contrast to G1 where this grouping is
evident only after the steady state is visited; for
G4, the connections between these pairs of nodes
appears to force them to be grouped from the
offset, therefore requiring a larger initial energy
for the minimal disturbance. Indeed, the critical
energy Ec for G4 is almost exactly twice that of
G1, suggesting that the initial dynamics of G1
which are largely restricted to only half of the grid,
are mirrored across the other half of the grid inG4.
At around t ≈ 30, the (already desynchronised)
dynamics transition to an alternative behaviour in
which nodes 2 and 3 are in-phase with one another
whilst nodes 1 and 4 are out-of-phase with one
another. The structure of the underlying dynam-
ical systems appear to become more complicated
as the graphs become more connected; indeed, the
desynchronised state in G1 has steady angular
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velocities, but this is not true of G2 and G4 where
the desynchronised angular velocities vary period-
ically, and G4 undergoes two distinct regimes of
desynchronisation.

Of particular note is that, although these more
connected grids are more nonlinearly stable than
G1, this stability does not increase monotonically
with the number of links; in G4 all possible con-
nections between nodes are realised, but its critical
energy is lower than that for G2. It is unclear why
this ordering arises, though the minimal distur-
bance in G2 does not visit a steady state ‘stepping
stone’ on route to desynchronisation, which may
result in a large initial energy being required for
transition. However, any further interpretation is
made challenging due the significant complexity of
steady states in G2 and G4 (see Appendix A).

4 Parametric dependence

The dependence of the minimal disturbance
energy Ec on the parameters α and P will be
investigated for graph G1 with K = 1. Ji &
Kurths (2014) [20] compute the probability psync
of a random initial condition synchronising for
0.1 ≤ P ≤ 1.9 and 0.1 ≤ α ≤ 2.9, each in steps of
0.1. Comparing these probabilities with the (upper
bound of) the critical energy Ec will indicate to
what extent the variation of global state space
structures aligns with the nonlinear robustness of
a particular synchronised state. For simplicity of
discussion, the upper bound for Ec will itself be
referred to as Ec in the remainder of this work.

Two cases will be examined: 0.5 ≤ P ≤ 2 with
α = 0.5 and 0.2 ≤ α ≤ 0.9 with P = 0.8. The syn-
chronisation probabilities for these two cases are
shown in Fig. 5(c,d), and it can been seen that
in the former case, Ji & Kurths (2014) [20] esti-
mate that psync ≈ 1 for P ≤ 0.5 and psync ≈ 0
for P ≥ 1.3, and in the latter case, psync ≈ 1 for
α ≥ 1 and psync ≈ 0 for α ≤ 0.1.

Fig. 5(a) shows the critical energy Ec for vary-
ing P with fixed α = 0.5. It is seen that Ec varies
gradually from around 1 when P = 0.5 to 0 when
P = 2. When P > 2 the synchronised state does
not exist (see Appendix A). In contrast to the
critical energy Ec, the synchronisation probability
for this case plotted in Fig. 5(c) decreases sharply
from psync ≈ 1 at P = 0.5 to psync ≈ 0.04 at
P = 1. For P > 1, the synchronisation probabil-
ity remains small and is essentially recorded to be

zero for P ≳ 1.3. The critical energy Ec places no
such importance on or around the value P = 1.

These results clearly demonstrate how Ec and
its associated initial condition, local properties
of the nonlinear structure of the state space,
evolve almost entirely independently from its
global structure in terms of basins of attraction
of synchronised states. Indeed, were the system
already in this particular synchronised state, its
robustness to a finite-amplitude perturbation is
not reduced nearly as rapidly as the synchroni-
sation probabilities would suggest as P increases.
Whilst a random initial condition with P = 1 has
a very small probability (4%) of synchronising,
disturbances about this particular synchronised
state need only be around 50% smaller energet-
ically than at P = 0.5 (where the probability
of synchronisation to some synchronised state is
nearly 100%) to ensure that the system remains
synchronised. Furthermore, when P = 0.5, there
still exists a minimal disturbance for desynchroni-
sation, despite the fact that psync ≈ 1.

Fig. 5(b) shows the variation of Ec with α for
fixed P = 0.8. We see that there is a gradual
increase in Ec as α increases from 0.1 to 0.7, fol-
lowed by a sudden increase in Ec at α = 0.75
and erratic behaviour around this higher value of
Ec for 0.75 ≤ α ≤ 0.9. Meanwhile in Fig. 5(d)
the synchronisation probability psync ≈ 0 when
α = 0.1 and remains small for α ≲ 0.4. For
α > 0.4 the synchronisation probability gradu-
ally increases so that psync ≈ 1 when α = 1. As
with the variation in P in figures 5(a,c), there
are features in the variation of psync with α that
are not replicated in the variation of Ec with α
and vice versa. Whilst there is a sudden increase
in psync around α ≈ 0.4, the critical energy Ec

varies smoothly through this region. Similarly, the
erratic behaviour of Ec for α ≥ 0.75 is not present
in the synchronisation probability.

It is unclear what structural changes occur in
the system which lead to the sudden increase in
Ec at α = 0.75 in Fig. 5(b). However, it is inter-
esting to note that the steady edge state visited by
minimal disturbance trajectories for α < 0.75 has
two unstable directions, whereas the state visited
for α ≥ 0.75 has three unstable directions. It is
unclear why the minimal disturbance swaps which
desynchronisation route it takes; the original edge
state still exists for α ≥ 0.75 but is apparently
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Fig. 5 Variation of the critical energy Ec against (a) P with α = 0.5 and (b) α with P = 0.8 for graph G1. Probability
of a random initial condition synchronising, psync, against (c) P with α = 0.5 and (d) α with P = 0.8 for graph G1 taken
from Ji & Kurths (2014) [20].

no longer part of an optimal path to desynchro-
nisation. The erratic behaviour for α ≥ 0.75 may
be due to difficulties in the convergence of the
optimisation algorithm; as the number of unstable
directions of the edge state increases, the con-
vergence performance of the algorithm decreases
[26, 42].

The computational time required to find the
minimal disturbances varies substantially across
the parameters considered here. When varying
P with fixed α, the results with P ≥ 0.7 took
around 1 to 2 hours (on a single, relatively slow
1.60 GHz processor running alongside other low-
intensity day-to-day tasks). For P < 0.7, the total
computational time increased dramatically, with
15 hours for P = 0.6 and 76 hours for P = 0.5
(using the same hardware). When varying α with
fixed P , the results with 0.1 ≤ α ≤ 0.3 took 1
to 4 hours (with α = 0.2 taking the least time),
and the time varied non-monotonically for all val-
ues of α, generally increasing as α increased. For
example, α = 0.4 took 16.5 hours, α = 0.7 took
42.5 hours, and α = 0.9 took 360 hours (15 days).
Surprisingly, between these increasingly long com-
putations, α = 0.6 took only 4 hours and α = 0.8
took 5 hours.

These times to convergence cannot be known
a priori by the method. However, in general, the
computational time appears to increase as the
basin stability measure psync approaches 1. At
first glance, this appears to be in contrast to the
algorithm’s behaviour when used to study tran-
sition to turbulence [26, 33] and other chaotic
systems [42] in which convergence difficulties have

been associated with the complexity of the divid-
ing saddle-point visited by the minimal trajectory.
However, psync → 1 means that the basin of
attraction of the desynchronised state is shrink-
ing, and hence it is likely colliding with the saddle
point in a bifurcation, thus potentially compli-
cating the dynamics in the vicinity of the saddle
point, leading to longer times to converge in a
similar manner to that understood in those other
contexts.

Although the convergence time becomes exces-
sively long for some parameter values, the time
to reach an initial energy E0 within 10% of the
final value of Ec is less than 4 hours in most cases,
with the few outliers (typically the longest cases
overall) reaching this 10% threshold within the
first third of their total computational time. The
vast majority of the computational time is spent
finessing initial conditions near the final answer in
order to converge (reach a small residual R and
small energy gap ϵEc

); identification of reason-
able approximations to worst-case scenarios can
be achieved much more rapidly.

This puts the computation of minimal distur-
bances on a favourable footing alongside multi-
node basin stability; the latter takes O(MN )
computations of the swing equation (where M
is the number of initial conditions examined at
each node) to estimate global properties of the
basin of attraction, which scales exponentially
with the number of nodes N . In doing so it is
very unlikely to identify any worst-case trajec-
tories, even approximately. On the other hand,
the minimal disturbance algorithm uses steepest
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ascent, the convergence rate of which is not explic-
itly tied to the system size (although the dynamics
near the dividing saddle-point are likely to become
more complex as the system size increases), but
an adjusted algorithm is needed to search for fur-
ther local optimal solutions. To provide rigorous
(converged) results within a reasonable compu-
tational time, algorithms for both basin stability
and minimal disturbances require improvement,
for example using Bayesian methods for basin sta-
bility [26] or a penalisation method for (minimal)
trajectory optimisation [42].

5 A UK grid

Fig. 6(a) shows a ‘United Kingdom’ power net-
work graph with N = 120 nodes used by Mitra et
al. (2017) [14, 22] to study basin stability and per-
turbation recovery in the swing equation. Mitra et
al. (2017) [22] noted that (in agreement with [39])
network dead-ends ‘undermine’ power-grid stabil-
ity. In particular, they find that disturbances at
nodes adjacent to dead-end nodes are the most
likely to lead to a desynchronised state. Halekotte
& Feudel (2020) [38] also studied this United
Kingdom grid using the swing equation, comput-
ing minimal disturbances for desynchronisation
(which they termed ‘minimal shocks’). However,
though they used the same graph topology (the
adjacency matrix A), the distribution of con-
sumers and generators used by Halekotte & Feudel
(2020) [38] was different to that of Mitra et al.
(2017) [14, 22], as was the choice of the parameter
K, thus ruling out a direct comparison between
the works.

Following Mitra et al. (2017) [22], the param-
eters are chosen to be P = 1, α = 0.1 and
K = 8, and the distribution of consumers and gen-
erators is that of Mitra et al. (2017) [22] shown
in Fig. 6(a). With these parameters, the dynam-
ics of the swing equation admit several localised
desynchronisation events, wherein the perturba-
tion is concentrated in a small number of nodes,
but the entire grid has a persistent desynchroni-
sation with ωi ̸= 0 given the coupling between
the nodes. One such localised desynchronisation is
shown in Fig. 6(b) which was found by sampling a
few randomly chosen initial conditions. It has ini-
tial energy E0 = 8.73 with all nodes active across
a spread of initial angular velocities |ωi(0)| ≲ 10.
As time progresses, the perturbations at N − 2

nodes decay, and only two nodes remain ‘active’
with a substantial ongoing perturbation. These
two nodes are indicated in Fig. 6(a), which shows
that one of these nodes is a dead-end and the
other is the dead end’s only connecting node. The
dead-end node oscillates around an average value
of ⟨ωi⟩ = Pi/α = −10 with an oscillation fre-
quency of |Pi|/α = 10, as suggested by Menck et
al. (2014) [39] and discussed below. Meanwhile, its
only neighbour oscillates around an average value
of ⟨ωi⟩ ≈ 0.11 with the same oscillation frequency.

The randomly-generated desynchronisation
event of Fig. 6(b) is used as an initial guess
for the optimisation procedure to find a minimal
disturbance. Given that the UK-grid admits sev-
eral isolated desynchronisation events, there is a
significant chance that the optimisation will con-
verge to a local solution only, focussed around one
particular desynchronisation event; further ran-
dom initialisations of the algorithm could be used
to study other desynchronisation events. Nev-
ertheless, the converged solution shown in Fig.
6(c) represents an entirely different desynchro-
nised solution from the initial guess, located in a
different part of the graph. This new desynchro-
nisation once more consists of a single dead-end
node which oscillates around an average value of
⟨ωi⟩ = Pi/α = 10 whilst its only neighbour oscil-
lates around ⟨ωi⟩ ≈ −0.11 (the sign change from
Fig. 6(b) is due to a swap of generator and con-
sumer for the dead end and its only neighbour).
The critical energy of this converged solution is
Ec = 2.69. This substantial reduction in initial
energy is reflected in the tighter spread of initial
frequencies in the grid, with |ωi(0)| ≲ 5.

Interestingly, a grid-wide disturbance is still
required to trigger this desynchronisation. This
is in contrast to the basin stability computations
of Mitra et al. (2017) [22], who indicate small
synchronisation probabilities (psync ≈ 0.2) for dis-
turbances at a single node for nodes which neigh-
bour a dead-end. However, Mitra et al. (2017)
[22] consider initial frequencies up to |ωi(0)| =
ωmax = 100, which as a single-node perturbation
leads to an initial kinetic energy of k(0)max =
ω2
max/2N ≈ 41.7. As a naive estimate (assuming

a uniform probability distribution for synchroni-
sation), we may expect single-node disturbances
to lead to desynchronisation for energies above
psynck(0)max ≈ 8.33 which is substantially larger
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Fig. 6 (a) A United Kingdom-like grid with N = 120 nodes split equally into generators (circles) and consumers (squares).
Desynchronising trajectories ω(t) for (b) a random initial condition with E0 = 8.73 used as a starting point for minimal
disturbance optimisation, and (c) the associated converged minimal disturbance with Ec = 2.69. In (b,c) 118 nodes are
show in light grey, and 2 nodes are shown in colour, as indicated in the grid in (a). Results shown for P = 1, α = 0.1 and
K = 8, as in Mitra et al. (2017) [22].

than the critical energy of the minimal distur-
bance, Ec = 2.69. It is reasonable to hypothesise
therefore that the minimal disturbance requires
the entire grid to be disturbed and in doing so
accesses much lower initial energies. Mitra et al.
(2017) [22] show that the average synchronisation
probability for multi-node disturbances decreases
rapidly as the number of disturbed nodes is
increased, saturating at psync ≈ 0.0005. Perform-
ing a similar estimate in which the entire grid is
perturbed leads to k(0)max = (ω2

max/2N)N =
5000 and psynck(0)max = 2.5, which is com-
parable to Ec. However, the reliability of this
estimate is difficult to interpret given a lack of
energetic information (in particular, its synchroni-
sation probability distribution) provided by Mitra
et al. (2017) [22].

The dynamics of the minimal disturbance
found by Halekotte & Feudel (2020) [38] are some-
what different to that computed here. Most of the
initial frequencies in their minimal disturbance are
zero, and those in a dead-end group of 7 nodes
are all negative whilst a nearby ‘counterbalanc-
ing’ cluster within the grid are all positive. The
frequencies remain nearby their initial values for
a while, before they all decay to near zero. After
a short period with near-zero frequencies, there
is a sudden burst of kinetic energy, with all fre-
quencies across the grid evolving chaotically at
elevated values. This high activity continues for
a substantial period, before the frequency of all
but the dead-end nodes collapse to near zero and
the remaining active nodes oscillate around either
zero or ±P/α. The latter stages of these dynam-
ics (chaotic frequencies across the grid, collapsing
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onto well-defined dead-end desynchronisation) are
similar to those found here. There are a few
possible reasons for the differences in the initial
dynamics, and why the initial condition and ini-
tial dynamics of Halekotte & Feudel (2020) [38]
are ‘cleaner’ and more readily interpreted. Most
significantly, [38] only allow initial conditions with
frequency perturbations, without phase perturba-
tions. This means that there must be an initial
period in which the frequencies drive the phases
away from equilibrium in order to activate the
nonlinear coupling term. This appears to allow
a more ‘controlled’ behaviour which drives the
phases towards an unstable saddle point equilib-
rium (as in the four-node graph G1 in Fig. 2(b,c))
which then breaks down to chaotic motion. An
additional factor is that the coupling constantK is
set to 5 by Halekotte & Feudel (2020) [38] instead
of 8 used here (and by Mitra et al. (2017) [22]),
meaning that nonlinear interactions are weaker
in the results of Halekotte & Feudel (2020) [38].
Finally, the distribution of generators and con-
sumers was chosen randomly by Halekotte &
Feudel (2020) [38], whereas the current work uses
the same distribution as Mitra et al. (2017) [22].
This means that the final dead-end desynchro-
nisation of Halekotte & Feudel (2020) [38] does
not exist in the current work; their final dead-end
consists of two nodes which are both consumers,
whereas the same two nodes in this work (the
two uppermost nodes in Fig. 6(a)) consist of one
generator and one consumer.

5.1 Dead-end desynchronisation
dynamics

While Menck et al. (2014) [39] provide a rationale
for why a desynchronised dead-end node should
oscillate around an average value of ⟨ωi⟩ = Pi/α,
they do not provide a full solution for the entire
grid which would permit these dynamics, instead
deriving this result for a single oscillating node
attached to a fixed, synchronised grid. Here, we
derive an asymptotic solution for such dead-end
desynchronisation events, including the reaction
of the rest of the grid. Label the isolated node
as i = 1 and its only neighbour as i = 2, which
is then connected in some way to the rest of the
grid, i = 3, . . . , N . To make analytical progress,
introduce the small parameter ε = α2/P ≪ 1
(this parameter is ε = 10−2 in the results above)

and scale the variables as follows: ωi = Pω̂i/α,

t = αt̂/P , Pi = PP̂i and θi = θ̂i, where the hat-
decoration denotes the new, scaled variables. For
ease of presentation, this hat-decoration will be
dropped and all variables are the scaled variables
in the remainder of this section unless specifically
contradicted.

The dynamics in Fig. 6 exhibit multiple time-
scales, the oscillation frequency of ωi itself (for
i = 1 and 2), along with the evolution of θi which
is largely governed by the average of ωi. A long
time τ = ε2t is introduced to account for these
distinct time-scales and an asymptotic analysis is
performed on the resulting equations:

θi;t + ε2θi;τ = ωi, (17)

ωi;t + ε2ωi;τ = −εωi + εPi

+ ε
K

P

N∑
j=1

Aij sin(θj − θi), (18)

where a semi-colon denotes partitial differenti-
ation and θi = θi(t, τ) and ωi = ωi(t, τ) in
which the two time-scales t and τ are treated as
independent variables.

First, consider the dead-end node i = 1.
Expanding the angular frequency as ω1 = ω1,0 +
εω1,1 +O(ε2) gives

O(ε0) : ω1,0;t = 0, (19)

O(ε1) : ω1,1;t = −ω1,0 + P1 +
K

P
sin(θ2 − θ1).

(20)

The first equation indicates that ω1,0 = Ω1(τ) and
θ1 = Ω1(τ)t+Θ1(τ) +O(ε). The solution to (20)
must remain bounded for asymptotic consistency;
it will be shown shortly that θ2 − θ1 depends lin-
early on t (it is not a constant) and so the final
term in (20) is t-periodic and leads to a t-periodic
component in ω1,1. However, the other terms con-
tributing to ω1,1;t are constants (with respect to t)
and so for asymptotic consistency, we require that
ω1,0 = Ω1(τ) = P1.

Now consider the main bulk of the grid, i =
3, . . . , N . This part of the grid is largely unaffected
by the desynchronised dead-end node. As such, a
solution in which θj − θi = ∆θsij + εDij + O(ε2)
is sought, so that the dynamics in the bulk of the
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grid represent a small perturbation from the syn-
chronised state. This leads to an expansion of the
form ωi = εωi,1 + ε2ωi,2 + O(ε3). Furthermore,
in order that the nodes attached to the dead-end
neighbour i = 2 remain close to their synchro-
nised values, the phase at i = 2 must also remain
close to its synchronised value. These expansions
of θj − θi (and hence also ωi) must therefore be
valid for i, j = 2, 3, . . . , N .

The swing equations for the main bulk of the
grid, i = 3, . . . , N , therefore become

ωi;t + ε2ωi;τ = −εωi + εPi

+ ε
K

P

N∑
j=2

Aij sin(∆θsij)

+ ε2
K

P

N∑
j=2

AijDij cos(∆θsij) +O(ε3) (21)

= −εωi + ε2
K

P

N∑
j=2

AijDij cos(∆θsij) +O(ε3),

(22)

where the second equality arises from the relation-
ship between Pi and the steady-state phases (3)
given that θ1 only contributes to the equation of
ω2 and so the fact that j = 1 is missing from
the sums in these equations for i = 3, . . . , N is
irrelevant. Inserting the expansion for ωi yields

O(ε1) : ωi,1;t = 0, (23)

O(ε2) : ωi,2;t = −ωi,1 +
K

P

N∑
j=2

AijDij cos(∆θsij).

(24)

The first equation results in ωi,1 = Ωi(τ) and so
θi = θsi + ε(Ωi(τ)t+Θi(τ)). The deviation of the
phase-differences from their steady values is then
Dij = (Ωj −Ωi)t+Θj −Θi (it will be shown that
this is also the case for j = 2). For asymptotic
consistency, Dij must remain bounded in t and so
Ωi = Ωj ≡ Υ for i, j = (2), 3, . . . , N . From this,
the two terms on the right-hand-side of (24) are
constants, and so for ωi,2 to remain bounded in t,

there is a consistency condition relating Υ to Dij :

Υ =
K

P

N∑
j=2

AijDij cos(∆θsij), for i = 3, . . . , N.

(25)
Next, consider the dead-end neighbour node

i = 2. Using the fact that, for j = 3, . . . , N , we
have θj − θ2 = ∆θs2j + εD2j +O(ε2), the equation
for ω2 is

ω2;t + ε2ω2,τ = −εω2 + εP2 + ε
K

P
sin(θ1 − θ2)

+ ε
K

P

N∑
j=2

A2j sin(∆θs2j)

+ ε2
K

P

N∑
j=2

A2jD2j cos(∆θs2j) +O(ε3). (26)

Before making further progress, note that the
swing equation (1) admits a global relation by
adding all N equations together:

d

dt

(
N∑
i=1

ωi

)
= −

N∑
i=1

ωi, (27)

from which it is seen that the total angular fre-
quency,

∑N
i=1 ωi, exponentially decreases to zero

for all initial conditions. We will take this total
angular frequency to be identically zero, given that
the analysis is for a stable dead-end desynchroni-
sation. In terms of the individual nodes of interest,
this reads

ω1 + ω2 +

N∑
i=3

ωi = 0, (28)

or, using the previous results,

ω2 = −ω1 − ε

N∑
i=3

Υ+O(ε2) (29)

= −ω1 − ε
K

P

N∑
i=3

N∑
j=2

AijDij cos(∆θsij) +O(ε2).

(30)

For large N , this first expression is asymptotically
consistent with ω1 = O(ε0) and ω2 = O(ε1) since

ε
∑N

i=3 Υ = ε(N − 2)Υ may be O(ε0).
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The combination AijDij cos(∆θsij) is antisym-
metric in i and j and so almost all of the sum
in (30) cancels except for the terms with j = 2.
Therefore,

ω2 = −ω1 − ε
K

P

N∑
i=3

Ai2Di2 cos(∆θsi2) +O(ε2)

(31)

= −ω1 + ε
K

P

N∑
i=3

A2iD2i cos(∆θs2i) +O(ε2).

(32)

The sum in this final expression is the same as
that in the final term of (26) after replacing the
dummy index i with j and noting that A22 = 0
(and multiplying by ε). Eliminating this sum in
preference of ω1 and ω2 in (26) gives

ω2;t + ε2ω2,τ = εω1 + εP2 + ε
K

P
sin(θ1 − θ2)

+ ε
K

P

N∑
j=2

A2j sin(∆θs2j) (33)

= εω1 + ε
K

P
sin(θ1 − θ2)− ε

K

P
sin(∆θs21),

(34)

where the second equality arises from the equation
for P2 in terms of the steady phases (3).

The expansion ω2 = εω2,1 + ε2ω2,2 + O(ε3) is
substituted into (34) along with ω1 = ω1,0+εω1,1+
O(ε2) and ω1,0 = Ω1 = P1 to give

O(ε1) : ω2,1;t = P1 +
K

P
sin(θ1 − θ2)

− K

P
sin(∆θs21) =

K

P
sin(θ1 − θ2), (35)

ω1,1;t = −ω1,0 + P1 +
K

P
sin(θ2 − θ1)

=
K

P
sin(θ2 − θ1), (36)

where the simplification in the first expression
arises from the equation for P1 in terms of the
steady phase ∆θ12 (3).

Finally, recall that θ1 = P1t+Θ1 +O(ε). Fur-
thermore, since θj = θsj + ε(Υt + Θj) + O(ε2)
for j = 3, . . . , N , we have that D2j = Υt +
Θj − ε−1(θ2 − θs2) + O(ε) and so in order for
D2j to remain bounded in t and O(ε0) we must

have θ2 = θs2 + ε(Υt + Θ2(τ) + F (t)) + O(ε2)
for some F (t) = O(ε0) uniformly in t. This leads
to the leading-order form of ω2 to be given by
ω2,1 = Υ+ f(t) with f(t) = F ′(t), indicating that
ω2 = O(ε) varies around the same value as the
rest of the grid, εΥ.

For times t < O(ε−1), we may write θ2 = θs2 +
O(ε), so that

O(ε1) : ω2,1;t =
K

P
sin(P1t+Θ1 − θs2), (37)

ω1,1;t = −
K

P
sin(P1t+Θ1 − θs2), (38)

which may be trivially integrated with respect to
t.

Combining the results together, and defining
Φ = Θ1(τ)− θs2, we arrive at

ω1 = P1 + ε
K

PP1
cos(P1t+Φ) +O(ε2) (39)

ω2 = εΥ− ε
K

PP1
cos(P1t+Φ) +O(ε2) (40)

ωi = εΥ+O(ε2), for i = 3, . . . , N. (41)

All that remains is to determine Υ, which may
be obtained from the global constraint ω1 + ω2 +∑N

i=3 ωi = 0, giving

Υ = − P1

ε(N − 1)
, (42)

which may be O(ε0) when N is large (the present
case with N = 120 and ε = 10−2 gives Υ ≈
−0.84P1 with |P1| = 1). The results for the
un-scaled variables read

ω1 =
P1

α
+

αK

P1
cos

(
P1

α
t+Φ

)
(43)

ω2 = − P1

α(N − 1)
− αK

P1
cos

(
P1

α
t+Φ

)
(44)

ωi = −
P1

α(N − 1)
, for i = 3, . . . , N. (45)

These solutions are plotted along with the numer-
ical results in Fig. 7(a). The phaseshift Φ is
undetermined by the analysis and depends on how
this solution is approached transiently; in Fig.
7(a), Φ = 0.689. Furthermore, this value drifts at
an almost constant rate on a slower timescale εt
(Fig. 7(b)), as anticipated after neglecting εΥt in
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Fig. 7 The dead-end desynchronisation converged to by the dynamics of Fig. 6(c) with (a) angular frequency ωi for nodes
i = 3, . . . , N (grey), node i = 1 (blue) and node i = 2 (red). The asymptotic solutions represented by (43–45) are plotted
with black dashed lines, using Φ = 0.689. All variables are the original, un-scaled versions. (b) The undetermined phase Φ,
computed by finding the best fit between (43) and the numerical data locally over a single period of oscillation, against the
intermediate timescale εt.

the leading order phase θ2 for times t < O(ε−1).
This drift could presumably be accounted for with
a more sophisticated asymptotic expansion (e.g.
using elements of WKB theory) but is of little
importance here. Satisfactory agreement is seen
with the numerical results, particularly for ω1.
The amplitude of the oscillation of ω2 is not quite
right, and this is likely because its two other (non
dead-end) neighbours also exhibit a small oscil-
lation in ωi which was not accounted for in the
analysis. The analysis also implicitly assumes that
K/P = O(ε0), and hereK/P = 8 which is perhaps
a little large, though εK/P = 0.08 is (somewhat)
small.

Interestingly, (43) is identical to the result for
a single oscillator coupled to a fixed, synchro-
nised grid derived by Menck et al. (2014) [39].
The derivation presented here shows how the same
dynamics arise asymptotically from a dead-end
node attached to a grid which responds to the
dead-end, and also shows how the rest of the
grid behaves. The rest of the grid shifts its mean

frequency by a uniform amount in order to pre-
serve the total angular frequency

∑N
i=1 ωi = 0

in an average sense by compensating for the ele-
vated mean frequency of the dead-end node, and
the dead-end node’s neighbour oscillates with the
same amplitude and frequency as the dead-end
node, with a phase shift of π between them,
to ensure that the total angular frequency is
instantaneously preserved.

A similar analysis can be performed for dead-
ends formed of a small group of nodes, and is
presented in Appendix C. However, the resulting
equations do not admit an analytic solution, and
suggest a rich variety of such dead-end dynamics,
as found by Menck et al. (2014) [39] and Halekotte
et al. (2021) [18].

6 Conclusions

Nonlinear measures of stability are required when
examining the robustness of a desired behaviour
in multi-stable systems. The size and shape of the
basin of attraction of desired and undesired states
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must be computed in order to provide such mea-
sures. Basin stability [19] provides estimates of the
size of these basins of attraction (and can be inter-
preted in terms of the probability of a random ini-
tial condition evolving towards the desired state),
and can give some indication of the shape of the
basin of attraction if initial conditions are sorted
in some state-space norm [25]. However, these
coarse-grained estimates miss small-scale features
of the boundary between different basins of attrac-
tion and the closest approach of this boundary
to the desired dynamics can have no relation to
the overall basin volume [26]. Initial conditions at
this closest approach of the basin boundary to the
desired dynamics represent the minimal distur-
bances to the desired behaviour that can trigger
transition to undesired dynamics, and can be com-
puted using a variational method [28] and has
recently been explored in some networked dynam-
ical systems, including the ‘swing equation’ for
(simplified) power-grid synchronisation [38].

This current work provided a direct compari-
son between basin stability and the amplitude of
minimal disturbances to cause desynchronisation
in the swing equation for a variety of grid layouts,
namely three simple four-node grids (G1, G2 and
G4) [20] and a complex model UK grid [22]. The
algorithm for computing minimal disturbances
was presented in detail, including an improved
convergence criteria in comparison to Halekotte
& Feudel (2020) [38]. For two of the simple
four-node grids (G1 and G4), the minimal distur-
bance initial condition drives the system towards
a steady, synchronised, unstable saddle point on
the basin boundary separating stable synchronised
and desynchronised states, before transitioning to
long-term desynchronisation. Each node in G1 is
connected to exactly two out of the three other
nodes, whereas in G4 each node is connected to
all three of the other nodes. This leads to the min-
imal disturbance in G1 being largely confined to
half the grid, propagating across the grid as the
system evolves, whereas the minimal disturbance
in G4 takes the isolated initial condition of G1 and
mirrors it across the other half of the grid, exciting
the entire grid at once and leading to a minimal
disturbance amplitude almost exactly twice that
of G1.

The dynamics of G2 are substantially differ-
ent. Exactly two of the four nodes are connected

to all three other nodes, and this asymmetric con-
nection in the grid causes the dynamics of these
two nodes to be completely identical throughout
the evolution of the minimal disturbance. This
also results in the minimal disturbance amplitude
varying non-monotonically with the number of
connections in the network, with grid G2 having
the largest such amplitude, and emphasises the
impact of details of the network topology on the
system’s nonlinear dynamics.

Simple grid G1 was investigated in further
detail, comparing the minimal disturbance ampli-
tude with the synchronisation probabilities of Ji
& Kurths (2014) [20] over a range of nodal pow-
ers and damping rates. Parameter values for which
near-zero and near-certain synchronisation prob-
abilities are computed by Ji & Kurths (2014)
[20] carry no meaning for the minimal distur-
bance amplitude, which varies smoothly through
these points. This observation demonstrates that,
just as in the turbulence transition problem [26],
the coarse-graining associated with basin stabil-
ity computations overlooks small-scale features
of basin boundaries and provides an incomplete
picture of the nonlinear stability of a desired
behaviour. While the presented algorithm can
only identify local optimal initial conditions, find-
ing any such ‘worst-case’ perturbation represents
an improvement over basin stability computa-
tions if identifying worst-case scenarios is criti-
cal. Though it is unlikely that a random initial
condition matches the minimal disturbance, it
is nevertheless a possible route away from the
desired dynamics and must be accounted for when
maintaining the desired behaviour is of utmost
importance for the application in mind. Indeed,
these two nonlinear measures provide complimen-
tary information and should be used together
when making relevant design decisions.

In isolation, the computational time required
to find a minimal disturbance cannot be known
a priori, and this computational time can be
quite short, or become unmanageably long for
some parameter values if the saddle-point dividing
the two basins of attraction becomes overly com-
plex. However, the comparison with basin stability
results demonstrated that there is a potential link
between this increased complexity (or at least with
the increased convergence time of the minimal
disturbance algorithm) with the basin stability’s
synchronisation probability approaching one.
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A minimal disturbance in the complex model
UK grid with parameters corresponding to the
basin stability computations of Mitra et al. (2017)
[22] was computed. The minimal disturbance
requires the entire grid to be perturbed, before
the dynamics settle down onto an isolated ‘dead-
end’ desynchronisation in which a node with a
single connection to the rest of the grid oscillates
around an elevated frequency. The dynamics of
the dead-end desynchronisation were investigated
in further detail, and an asymptotic expansion
was developed to formalise the estimate of Menck
et al. (2014) [39]. The resulting solution shows
how the zero total angular frequency of the grid
is maintained by a small frequency perturbation
across the rest of the grid which balances the ele-
vated mean frequency of the dead-end node, and
the dead-end’s single neighbouring node has an
angular frequency which oscillates exactly out-of-
phase with the dead-end node to instantaneously
ensure zero total angular frequency. A rough
estimate of the minimum size of whole-grid pertur-
bations required to desynchronise the grid using
the results of Mitra et al. (2017) [22] is com-
parable to the minimal disturbance amplitude,
though this correspondence should not be over-
interpreted, owing to the assumption made of a
uniform synchronisation probability distribution
in perturbation energy, which is unlikely to be
realistic [25].

In summary, both basin stability and minimal
disturbance amplitudes provide important, and
often complementary information about the non-
linear stability of desired dynamics in multi-stable
systems, and this work advocates for the use of
both measures when analysing nonlinear systems.
In the case of power-grid dynamics specifically,
minimal disturbances in models which more real-
istically account for the power grid dynamics, such
as the normal form model [6, 7] or the third-
order model [1] should be investigated, in addition
to the swing equation itself with the added com-
plexities of non-equal properties (nodal power,
damping, line admittance) across the grid. The
underlying methodologies translate readily across
applications, and improved algorithms using a
Bayesian approach for basin stability [26] and a
penalised optimisation procedure [42] that may
be incorporated into the computation of minimal
disturbances to improve its convergence rate have
recently been put forward to improve convergence.

Both methods present computational challenges,
particularly as the system size (number of nodes)
grows and if the state space becomes complex. For
the case of minimal disturbances, improvements
to the algorithm are required to find other local
optimal solutions, perhaps through penalisation of
trajectories that move close to already discovered
optimal initial conditions. It is evident that fur-
ther investigation of the interplay (or lack thereof)
between these nonlinear measures is warranted,
along with further improvements to the associated
algorithms.

Supplementary information. The code used
to compute minimal disturbances is deposited
here: https://github.com/TomEaves/DAL swing.
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Appendix A Steady
solutions and
linear dynamics

The graph G1 has adjacency matrix given by

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 . (A1)

This form of adjacency matrix, along with the
relation Sij ≡ sin(∆θsij) = − sin(∆θsji) means that
the steady state equations

K

N∑
j=1

Aij sin(∆θsij) = −Pi for i = 1, . . . , N

(A2)
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depend on only 4 independent synchronous phase
differences ∆θs12, ∆θs13, ∆θs24 and ∆θs34. The sine
of these phase differences then satisfy

1 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 −1



S12

S13

S24

S34

 =


R
−R
−R
R

 , (A3)

where R = P/K. These equations are underdeter-
mined. Their solution is given by

S12

S13

S24

S34

 =
R

2


1
1
−1
−1

+ λ


1
−1
1
−1

 (A4)

where λ is a constant. To ensure that |Sij | ≤ 1,
we must have

−1 + R

2
≤ λ ≤ 1− R

2
, (A5)

which also demonstrates that no synchronous
solutions exist if R > 2.

Inverting sin adds further solutions. In partic-
ular, if ∆θsij ∈ [−π, π), and using the convention

that sin−1(x) ∈ [−π/2, π/2], we introduce primary
and secondary solutions for each phase difference:

∆θs,1ij = sin−1(Sij),

∆θs,2ij = sgn(sin−1(Sij))π − sin−1(Sij). (A6)

Finally, the phases themselves are found by
inverting

M


θs1
θs2
θs3
θs4

 ≡

−1 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 1



θs1
θs2
θs3
θs4

 =


∆θs12
∆θs13
∆θs24
∆θs34

 .

(A7)
The matrix M is singular, and these equations
are also underdetermined. Their solution may be
written as

θs1
θs2
θs3
θs4

 = M+


∆θs12
∆θs13
∆θs24
∆θs34

+ β


1
1
1
1

 , (A8)

where M+ is the Moore–Penrose pseudoinverse
of the matrix M and β is an arbitrary con-
stant that accounts for the translational symmetry
θi 7→ θi + β. This solution is valid provided that
(∆θs12,∆θs13,∆θs24∆θs34) is in the image of M ,
which is the case here for all 16 combinations of
solution branches (i.e. for all combinations of pri-
mary and secondary solutions for each of the four
steady phase differences).

The unstable synchronous state plotted in Fig.
2(c), with R = 0.8 so that −0.6 ≤ λ ≤ 0.6,
has λ = 0.5928, branches ∆θs,212 , ∆θs,213 , ∆θs,124 and
∆θs,134 , and β = 0. The linearly stable synchronous
state about which the energy E(t) is measured has
λ = β = 0 and primary solutions for each phase
difference.

The dynamics seen in Fig. 2(b) as the tra-
jectory leaves the unstable steady state can be
described in more detail by observing that, after
linearisation, the equations of motion are

θ̈i + αθ̇i +

[
K

N∑
j=1

Aij cos∆θsij

]
θi

= K

N∑
j=1

Aijθj cos(∆θsij), (A9)

which take the form of damped harmonic
oscillation of each node, forced by neigh-
bouring nodes. However, the ‘restoring’ force[
K
∑N

j=1 Aij cos∆θsij

]
θi ≡ Kiθi is not necessarily

restoring since Ki < 0 is possible. Indeed, the two
branches of solutions satisfy cos(∆θs,1ij ) > 0 and

cos(∆θs,2ij ) < 0. For the steady state plotted in
Fig. 2(c), we have K1 < K3 < 0 < K2 < K4. This
ordering is reflected in Fig. 2(b); the first node to
depart from the steady state is mode 1, followed
by node 3, then node 2, and finally node 4, in the
order of largest destabilising force K1θ1 through to
largest restoring force K4θ4. Given that the nodes
are coupled together, any slight initial disturbance
in node 1 will grow exponentially, and will even-
tually cause growth in all other nodes even if they
were initially completely stationary.

Whilst in theory, similar exercises may be car-
ried out for graphs G2 and G4, the equivalent
expressions to (A3) involve non-square matrices,
introducing further dimensions to the solution
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families. The details of these solutions will not be
computed here.

Appendix B Computing the
Lagrange
multiplier c.

To determine the Lagrange multiplier c, the steep-
est ascent update (13–14) must lead to a new set of
initial conditions {θ0,ni , ω0,n

i }Ni=1 with energy E0:

E0 =
1

2N

n∑
i=1

|ω0,n
i |

2

+
1

4N

N∑
i=1

N∑
j=1

Aij |θ0,nj − θ0,ni −∆θsij |2. (B10)

Inserting the steepest ascent update (13–14) and
using the fact that the previous set of initial condi-
tions {θ0,n−1

i , ω0,n−1
i }Ni=1 ≡ {θ0i , ω0

i }Ni=1 also have
energy E0, rearranging (B10) gives a quadratic
equation for c:

4ϵ

N

[
2

N∑
i=1

|ω0
i |2 +K

N∑
i=1

N∑
j=1

AijC
2
ij

]
c2

+ 4

[
K

N∑
i=1

N∑
j=1

Aij(θ
0
j − θ0i −∆θsij)Cij

+
ϵK

N

N∑
i=1

N∑
j=1

Aij(φ
0
j − φ0

i )Cij − 2

N∑
i=1

|ω0
i |2

−2ϵ

N

N∑
i=1

η0i ω
0
i

]
c+ 4

N∑
i=1

η0i ω
0
i

2ϵ

N

N∑
i=1

|η0i |2

+ 2K

N∑
i=1

N∑
j=1

Aij(θ
0
j − θ0i −∆θsij)(φ

0
j − φ0

i )

+
ϵK

N

N∑
i=1

N∑
j=1

Aij(φ
0
j − φ0

i )
2 = 0, (B11)

where

Cij =

N∑
k=1

(
Ajk(θ

0
k − θ0j −∆θsjk)

−Aik(θ
0
k − θ0i −∆θsik)

)
. (B12)

In general, this quadratic equation for c may
have up to two real solutions. If there are no real

solutions, then a reduction in ϵ can be made to
guarantee that a real solution exists. When two
real solutions are available, the one with smallest
magnitude is sought, as this is the solution leading
to new initial conditions closest to the previous set
of initial conditions, as expected from an iterative
gradient-based optimisation method (see [43] for
a geometric interpretation of this choice).

Appendix C Multiple-node
dead-end
desynchronisa-
tion

The analysis of section 5 can be extended to
a small dead-end group of nodes in a similar
manner. In particular, if k ≪ N nodes form a
dead-end, linked via a single node k+1 to the rest
of the grid, then (in terms of the scaled variables)

ωi = Ωi(τ) + εωi,1 +O(ε2) for i = 1, . . . , k
(C13)

ωk+1 = εΥ+ εωk+1,1 +O(ε2), (C14)

ωi = εΥ+O(ε2) for i = k + 2, . . . , N.
(C15)

The main grid frequency offset is

Υ = −
∑k

i=1 Ωi

ε(N − k)
, (C16)

which requires that ε(N − k) = O(ε0), which is
achievable when 1 ≤ k ≪ N . No clear state-
ment about each individual Ωi(τ) can be made,
as they arise from the solution to the equations
for ωi,1, for i = 1, . . . , k along with ωk+1,1 (given
below), which are somewhat more complex than
the equivalent equations when k = 1 and appear
(numerically) to admit several different solutions
depending on their initial conditions.

The structure of the result for a k-node dead-
end has a similar form to the single-node dead-
end. The bulk of the grid (nodes i = k+2, . . . , N)
have their frequency shifted by an amount εΥ
which is related to balancing the total net power
associated with the k dead-end nodes. The single
node which connects the dead-end group to the
rest of the grid (node k+1) has the same mean fre-
quency of εΥ, but oscillates around this frequency.
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For the single-node dead-end, this oscillation is
due to the activity of the dead-end node, whereas
for a multi-node dead-end, this oscillation depends
on the dynamics of the dead-end group.

The dynamics within the dead-end and its sin-
gle neighbour are complex. Each dead-end node
has a frequency varying on the slow time-scale τ at
leading order (Ωi(τ))), but this frequency does not
straightforwardly relate to a given node’s power
Pi. The O(ε) variation around this leading order
frequency is given by

ωi,1;t = −Ωi(τ) + Pi

+
K

P

k∑
j=1

Aij sin((Ωj − Ωi)t+Θj −Θi)

− K

P
Ai,k+1 sin(Ωit+Θi − θsk+1), (C17)

and the O(ε) variation around εΥ in its single
neighbour is given by

ωk+1;t =

k∑
i=1

Ωi −
K

P

k∑
j=1

Ak+1,j sin(∆θsk+1,j)

+
K

P

k∑
j=1

Ak+1,j sin(Ωjt+Θj − θsk+1).

(C18)

The dynamics of the dead-end are self-contained,
and this drives the oscillation at node k+1. Con-
sistency conditions are not possible to apply in
general. Numerical experiments reveal multiple
solutions in the dead-end (for example the cluster
at the top-right of the UK grid in Fig. 6(a)) in
which connected nodes may have the same or dif-
ferent values of Ωi, and these values are typically
observed to be ±Pi or 0. These observations mean
that any of the sine terms in (C17–C18) which at
first glance appear periodic in t (and hence not
part of the consistency condition) may in fact be
constant, and so they may or may not be included
in the consistency condition depending on the
exact dead-end solution under consideration.

If none of the leading order dead-end fre-
quencies are zero, then it can be deduced that∑k

i=1 Ωi =
∑k

i=1 Pi, by adding all k equations
(C17) and applying the consistency condition.
Halekotte & Feudel (2020) [38] present a partic-
ular multi-node dead-end desynchronisation for

which all nodes in the dead-end have the same
non-zero leading order frequency. Using Ωi(τ) ≡ ℧
and the steady state phase relation (3) leads to

℧ =
K

kP

k∑
j=1

Ak+1,j sin(∆θsk+1,j) (C19)

which determines the dead-end frequency in terms
of the synchronised steady phase differences.

The desynchronised leading-order phase differ-
ences are then given by the asymptotic consistency
of (C17) given that the sine connections within
the dead-end all become constants:

0 = −℧+ Pi +
K

P

k∑
i=1

sin(Θj −Θi). (C20)

The leading order phase differences in the dead-
end satisfy a similar relation to the phase differ-
ences in the synchronised state (3), except that the
connection to the rest of the grid via node k + 1
plays no role, and the powers Pi 7→ Pi − ℧. The
full solution for the entire grid in this case is

ωi = ℧+ ε
K

P℧
Ai,k+1 cos(℧t+Φi) +O(ε2)

for i = 1, . . . , k (C21)

ωk+1 = εΥ− ε
K

P℧

k∑
j=1

Ak+1,j cos(℧t+Φj)

+O(ε2), (C22)

ωi = εΥ+O(ε2) for i = k + 2, . . . , N,
(C23)

with

Υ = − k℧
ε(N − k)

, (C24)

and Φj = Θj(τ)− θsk+1, which has a similar form
to the single-node dead end solution (39–41).
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